Compatibility/Incompatibility in surface-modified, aggregated, precipitated silica nanocomposites

Lahari Pallerla^a, Kabir Rishi^a, Gregory Beaucage^a, Anh Tang^a

^a Department of Materials Science & Engineering, University of Cincinnati, Cincinnati, OH 45221, USA

Adapted from Rishi, K.; Pallerla, A.; Beaucage, G.; Tang, A. Dispersion of surface-modified, aggregated, fumed silica in polymer nanocomposites. This article has been accepted by J. Appl. Physics. After it is published, it will be found at Link. Copyright 2020 American Institute of Physics

Model

Surface interactions: Weak (Random Phase Approximation^{1,2}) (a)

$$\Gamma(q) = \frac{1}{1 + \phi v \left(\frac{I_o(q)}{\phi_0} \right)}$$

Strong (modified Born-Green approach³) (a)

$$S(q,\xi) = \int_0^\infty P(\xi) \left[\frac{1}{1+p\theta(q,\xi)} \right] d\xi$$

Methods

Commercial SBR (80M.U.), PS (MW-125K g/mol) & CH₃-terminated PDMS (*MW*- 500 g/mol) mixed with fumed silica (unmodified, surface modified, grafted)

Aggregate Morphology

resulting simulated aggregate⁶

References

37.

1. Vogtt, K. Beaucage, G.; Weaver, M.; Jiang, H. Thermodynamic Stability of Worm-like Micelle Solutions. Soft Matter 2017, 13 (36), 6068–6078. 2. Jin, Y.; Beaucage, G.; Vogtt, K.; Jiang, H.; Kuppa, V.; Kim, J.; Ilavsky, J.; Rackaitis, M.; Mulderig, A.; Rishi, K.; Narayanan, V. A Pseudo-Thermodynamic Description of Dispersion for Nanocomposites. *Polymer* 2017, 129, 32–43. 3. McGlasson, A.; Rishi, K.; Beaucage, G.; Chauby, M.; Kuppa, V.K.; Ilavsky, J.; Rackaitis, M. Quantification of dispersion for weakly and strongly correlated nanofillers in polymer nanocomposites. *Macromolecules* 2020, DOI: 10.1021/acs.macromol.9b02429. 4. Rishi, K.; Pallerla, A.; Beaucage, G.; Tang, A. Dispersion of surface-modified, aggregated, fumed silica in polymer nanocomposites. This article has been accepted by *J. Appl. Physics*. After it is published, it will be found at Link. 5. Beaucage, G. Approximations Leading to a Unified Exponential/Power-Law Approach to Small-Angle Scattering. J. Appl. Crystallogr. 1995, 28 (6), 717–728. 6. Mulderig, A.; Beaucage, G.; Vogtt, K.; Jiang, H., and V. Kuppa. Quantification of branching in Fumed Silica. J. Aerosol Sci. 2017, 109 (March), 28-

UNIVERSITY OF Cincinnati

2020 American Institute of Physics

<u>Acknowledgements</u>	
NSF	Argonne NATIONAL LABORATORY
CMMI 1635865	Beamline 9ID-C APS DOE
CMMI 1761420	DE-AC02-06CH11357
For further inform Gregory Beaucage	nation, please contact: beaucag@ucmail.uc.edu